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LE’ZTER TO THE EDITOR 

Cluster-cluster aggregation with dipolar interactions 

Paulo M Mors?, Robert Botet and Rimi Jullien 
Laboratoire de Physique des Solides, UniversitC Paris-Sud, Centre d’Orsay, Bltiment 510, 
91405 Orsay, France 

Received 30 July 1987 

Abstract. The hierarchical cluster-cluster aggregation model is extended in the presence 
o f  dipolar interactions between the magnetic dipoles attached to each individual particle. 
It is found that the fractal dimension of the resulting clusters decreases when the intensity 
of the momenta increases, as observed in recent experiments. 

There has recently been much theoretical progress in understanding aggregation 
phenomena [ 11. Two diff usion-limited aggregation models, particle-cluster [2] and 
cluster-cluster aggregation [3], have been introduced and extensively studied by means 
of numerical simulations, leading to fractal aggregates whose fractal dimensions have 
been recovered in several experiments. In particular, the cluster-cluster aggregation 
model was able to describe quantitatively the fractal structure of some aerosol [4] and 
colloid aggregates [5]. In  its original form the cluster-cluster model is a very rough 
simulation of physical reality. In particular, the particle-particle interactions are 
sketched by an infinite positive potential for interparticle distances smaller than the 
particle diameter, an infinite negative potential at the particle diameter and a strictly 
vanishing potential for all larger distances. This is relatively well justified in the case 
of van der Waals interactions which are strongly decreasing with interparticle distance 
(taking into account the fact that the details of the potential curve only affect the 
short-distance structure, as recently confirmed by Langevin molecular dynamics [6]). 
However, this is not the case when dipolar interactions are present. Some experiments 
have led to fractal dimensions smaller than those predicted by the original model, and 
polarisability effects have been invoked to explain this discrepancy. A crude model, 
the tip-to-tip model, has been introduced [7], able to explain quantitatively the fractal 
dimension of aluminium hydroxide aggregates, as measured by low-angle x-ray scatter- 
ing [8]. The same kind of experiments have also been performed on iron hydroxides 
[9], leading to a smaller fractal dimension. This low fractal dimension could be due 
to the effect of long-range dipolar magnetic interactions. The same effect has been 
recently observed in experiments done with magnetic (cobalt and iron) aerosols where 
it has been clearly observed that the fractal dimension decreases when the magnetic 
moment on the individual particles increases [ 101. In this letter we extend the cluster- 

+ Permanent address: lnstituto de Fisica, Universidada Federal do Rio Grande do SUI, 90049 Port0 Alegre, 
RS, Brazil. 

0305-4470/87/150975 +06$02.50 01987 IOP Publishing Ltd L975 



L976 Letter to the Editor 

cluster model to simulate this physical situation. Rigid magnetic dipoles are now 
attached to the particles and both the rotational diffusion motion of the clusters and 
the orientations of the dipoles are influenced by long-range dipolar interactions. 

For simplicity we have used the hierarchical scheme [ 113 for cluster-cluster aggrega- 
tion which, in the original version, is known to give the same quantitative results 
demanding less computational time. In this scheme successive generations of clusters 
with equal numbers of particles 2 ,  4, 8 , .  . . ,2"  are built, starting from a collection of 
identical spherical particles of unit diameter. A cluster of the new generation always 
results from the sticking of two clusters of the old generation. Here, we have used a 
qualitatively different and more realistic procedure than in the original scheme. In  
particular, we have considered off-lattice motions and, for the first time, we have 
included three-dimensional rotational Brownian diffusion (to our knowledge rotational 
diffusion has been up to now only studied in two dimensions in the cluster-cluster 
model [ 121). Also, to each individual particle was attached a unitary vector, U,  defining 
the direction of its momentum, which was randomly oriented in the beginning. 

When starting a collision process, two clusters of the old generation are randomly 
rotated and  placed apart in space with their centres of mass R,, apart. It could be 
thought that the choice of Ro should be crucial, since, in presence of long-range 
interactions, R,, must, in principle, be chosen sufficiently large to avoid the influence 
of the initial conditions. In practice, we have observed that this choice is not so 
important and we have finally chosen R,=2(Ry+R,y) ,  where R? is the maximum 
radius of cluster i. In  one example, in the presence of dipolar interactions, we have 
varied R,, up  to three times this value with no significant change (within the error bars) 
in the resulting fractal dimension, but with a dramatic increase in computing time! 

The two clusters being placed at their initial positions, two types of Brownian 
movements are then performed alternately, translations and rotations. The translation 
occurs in a randomly chosen direction and  it is of one unitary distance, except when 
an overlap occurs, when it is chosen in such a way that one particle of cluster 1 becomes 
exactly tangent to one particle of cluster 2.  The rotation is performed in one of the 
three planes (randomly chosen) defined by two of the three axes, either in a given 
direction or another. Following a prescription already adopted in two dimensions 
[12], the absolute value for the rotation angle is the one which allows for the most 
distant particle (with respect to the centre of mass of its cluster) a translation of one 
unitary distance. Here also it is chosen smaller if an  overlap were to occur. For 
numerical ease one of the clusters is the one which translates and  the other one is the 
one which rotates. Also, as usually in such a hierarchical procedure, when the two 
centres of mass reach a distance apart greater than a given value, R, ,  the collision 
process is reinitialised. Here also we have studied the influence of the choice of R, ,  
and to avoid large errors and  to stay within reasonable computation times we have 
finally chosen R ,  = 2Ro. 

After the calculation of each movement, the quantity 

is computed. Here Au is the change in the dipolar energy resulting from the movement. 
The dimensionless dipolar energy is calculated as a sum over all the pairs of particles 
of the two clusters: 
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with 

H , , = [ 3 ( u *  r , / ) r , , - + , l l r ~ /  
and 

r,, = r, - r, 

where r, (counted in particle diameter units) denotes the position of the centre of 
particle i. The dimensionless parameter K is then given by 

K = p 2 / ( d 7 k T )  

where p is the intensity of the individual momenta, d is the particle diameter and  T 
is the temperature. 

After P is calculated, the movement is effectively performed with probability P. 
This means that for very large momenta (or zero temperature) the movement is only 
performed if it lowers the energy. On the other hand, for vanishing momenta the 
movements are performed with a probability ( P = i )  independent of the change of 
energy. This is a realistic procedure quite similar to standard Monte Carlo algorithms 

After each pair of movements (performed or not) a relaxation of the momenta may 
be done. For this we mean visiting, in a random order, all the particles of the two 
clusters and, for each of them, orienting its momentum in the direction of the total 
field, at its position. This procedure physically assumes a quite short relaxation time 
for dipole orientations. 

Finally, as in the standard hierarchical procedure, the cluster of the new generation 
is defined as the ensemble of the two clusters at their positions just after sticking. 

In presence of dipolar interactions, the time of computing quickly becomes very 
high and  so we limited ourselves to relatively modest aggregates of 128 particles. The 
fractal dimensions reported below were estimated from the plot of the radius of gyration 
as a function of the number of particles after averaging over 15 independent samples. 

We have first checked that, without dipolar interactions, without rotational diffusion 
and without momentum relaxation, a value very close to the one already known for 
translational Brownian diffusion in three dimensions E141 is recovered. In fact we 
recover D = 1.75k0.08,  a value within the error bars but somewhat smaller than the 
expected one (1 .78k0.05) .  The difference can very well be attributed to finite-size 
effects. We have then studied the influence of Brownian rotational diffusion. As in 
the previous two-dimensional study [ 121, the fractal dimension is slightly reduced. 
For the absolute angle of rotation chosen as described above, we find D = 1.72k0.08.  
Thus the relative lowering of D is of the same order as in two dimensions [12]. A 
typical cluster is shown in figure 1 .  Here the arrows showing the momenta are randomly 
oriented and  did not play any role in the diffusion-sticking process. 

In a second series of calculations we have taken into account the dipolar interactions 
without momentum relaxation. In the limit of very large momenta (i.e. for K - ’  = 0), 
we find D = 1.35 kO.08, a value significantly smaller than the preceding one. A corre- 
sponding typical cluster is shown in figure 2. Here also, all the momentum orientations 
are present but one can observe that locally some correlated orientations appear. 

Finally, we have included relaxations of the momenta in our calculations. In the 
limit of zero temperture, we find D = 1.34*0.08, a value very close to the one without 
relaxation. A typical sample is shown in figure 3. Even if the fractal dimension is 
almost the same as in the sample of figure 2, a great difference is observed in the 
orientations of the dipoles. They are now quite well aligned. We have also tested that, 

~ 3 1 .  
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Figure 1. A typical cluster of 128 particles obtained without taking into account dipolar 
interactions nor the orientational dipole relaxation. 

Figure 2. A typical cluster of 128 particles obtained in the presence of strong dipolar 
interactions (‘zero-temperature limit’) but without including dipole relaxations. 

as expected, the effect of reducing the intensity of the momenta is to increase the 
resulting fractal dimension. For K-’ = 0.001 a value of D = 1.50 is recovered. 

The main conclusion of our study is that including a relaxation of the momenta 
has a strong effect on the local orientations of the momenta but does not influence the 
fractal dimension of the resulting cluster as much. The main effect comes from 
long-range interactions which oblige the clusters to stick on their neighbouring tips, 
as in the previous tip-to-tip model [7]. It is worth noting that, although slightly smaller, 
the fractal dimension recovered here, in the limit of very large momenta (‘zero- 
temperature’ limit) is very close to the one of the tip-to-tip model in three dimensions 
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Figure 3. A typical cluster of 128 particles obtained in the presence of strong dipolar 
interactions and dipole relaxations. 

(D = 1.42k0.05) [71. However no more serious comparisons can be done because in 
the crude tip-to-tip model, no diffusion (either translational or rotational) was allowed. 
Moreover, the reduction of the fractal dimension with increasing momentum is in good 
agreement with recent experiments on magnetic aerosols [ 101. The fractal dimensions 
for iron (high momentum) and cobalt (low momentum) aggregates are found to be 
1.54 and 1.72, respectively, varying in the right direction and both located within our 
limited values, 1.34 (infinite momentum) and 1.72 (zero momentum). However, no 
more quantitative comparison can be done due to our large error bars. 

Even if the main effect of reduction of the fractal dimension is here recovered, we 
must pursue the present study, in particular by extending the original cluster-cluster 
model in a box [3] in the presence of dipolar interactions. This is essential to study 
the kinetics, but also to study the effect of an external field which is known to reduce 
the fractal dimension considerably [ 101. 
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